<table>
<thead>
<tr>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antarctic mass balance from CryoSat</td>
<td>Geophysical Research Letters</td>
<td>2014</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>Mass balance of the Amundsen sea sector, West Antarctica, 1992-2016</td>
<td></td>
<td>2016</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>A 25-year record of Antarctic ice sheet mass balance from satellite altimetry</td>
<td></td>
<td>2016</td>
<td>Andrew Shepherd, Anna Hogg</td>
</tr>
<tr>
<td>Pace and onset of ice drawdown in West Antarctica</td>
<td></td>
<td>2016</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>A calculation of ice sheet mass balance accounting for modelled firn compaction</td>
<td></td>
<td>2016</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>Five decades of strong temporal variability in the flow of Brunt Ice Shelf, Antarctica.</td>
<td>Journal Glaciology</td>
<td>2016</td>
<td>G. Hilmar Gudmundsson, Jan De Rydt, Thomas Nagler</td>
</tr>
<tr>
<td>West Antarctic glaciers</td>
<td>Eos</td>
<td>2017</td>
<td>Hannes Konrad/Andy Shepherd</td>
</tr>
<tr>
<td>Improvements in ice sheet sea level projections</td>
<td>Nature Climate Change</td>
<td>2017</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>Impacts of the Larsen-C ice shelf calving event</td>
<td>Nature Climate Change</td>
<td>2017</td>
<td>Anna Hogg</td>
</tr>
<tr>
<td>High resolution RACMO Amundsen Sea</td>
<td>Annals of Glaciology</td>
<td>2017</td>
<td>Anna Hogg</td>
</tr>
<tr>
<td>Dotson ice shelf basal melting</td>
<td>Geophysical Research Letters</td>
<td>2017</td>
<td>Anna Hogg/Andy Shepherd</td>
</tr>
<tr>
<td>Observationally constrained surface mass balance of Larsen C Ice Shelf, Antarctica</td>
<td>The Cryosphere</td>
<td>2017</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>Increased ice flow in Western Palmer Land linked to ocean melting</td>
<td>Geophysical Research Letters</td>
<td>2017</td>
<td>Anna Hogg et al</td>
</tr>
<tr>
<td>Commentary: Impacts of the Larsen-C Ice Shelf calving event</td>
<td>Nature Climate Change</td>
<td>2017</td>
<td>Anna Hogg</td>
</tr>
<tr>
<td>Improvements in ice-sheet sea-level projections</td>
<td>Nature Climate Change</td>
<td>2017</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>Title</td>
<td>Journal</td>
<td>Year</td>
<td>Authors</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>----------------------------------------------</td>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Assessment of CryoSat-2 interferometric and non-interferometric SAR altimetry over ice sheets</td>
<td>Advances in Space Research</td>
<td>2017</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf</td>
<td>Geophysical Research Letters</td>
<td>2017</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>Mapping Ice Sheet Grounding Lines With CryoSat-2</td>
<td>Advances in Space Research</td>
<td>2018</td>
<td>Anna Hogg, Andy Shepherd</td>
</tr>
<tr>
<td>Net retreat of Antarctic glacier grounding lines</td>
<td>Nature Geoscience</td>
<td>2018</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>A new Digital Elevation Model of Antarctica derived from CryoSat-2 altimetry</td>
<td>The Cryosphere</td>
<td>2018</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>Trends and connections across the Antarctic cryosphere.</td>
<td>Nature</td>
<td>2018</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>Antarctic ice losses tracking high</td>
<td>Nature Climate Change</td>
<td>2018</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica</td>
<td>The Cryosphere</td>
<td>2018</td>
<td>J. De Rydt et al.</td>
</tr>
<tr>
<td>Modelling the climate and surface mass balance of polar ice sheets using RACMO2, part 2: Antarctica (1979–2016).</td>
<td>The Cryosphere</td>
<td>2018</td>
<td>J.M. van Wessem</td>
</tr>
<tr>
<td>Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016</td>
<td>The Cryosphere</td>
<td>2018</td>
<td>H. Rott et al.</td>
</tr>
<tr>
<td>Mass balance of the Antarctic Ice Sheet from 1992 to 2017</td>
<td>Nature</td>
<td>2018</td>
<td>Shepherd et al</td>
</tr>
<tr>
<td>Decorrelation of GRACE Time Variable Gravity Field Solutions Using Full Covariance Information</td>
<td>Geosciences</td>
<td>2018</td>
<td>Alexander Horvath</td>
</tr>
<tr>
<td>Trends in Antarctic ice sheet elevation and mass</td>
<td>Geophysical Research Letters</td>
<td>2019</td>
<td>Andrew Shepherd</td>
</tr>
<tr>
<td>Calving cycle of the Brunt Ice Shelf, Antarctica, driven by changes in ice-shelf geometry</td>
<td>The Cryosphere</td>
<td>2019</td>
<td>J. De Rydt et al.</td>
</tr>
<tr>
<td>Evaluating gravimetric mass balance time series for the Antarctic and Greenland Ice Sheet – ESA ice sheets CCI round robin results</td>
<td>In revision (Geosciences)</td>
<td>2019</td>
<td>Andreas Groh</td>
</tr>
<tr>
<td>Advanced methods for Antarctic mass-balance estimates from satellite Gravimetry</td>
<td>In preparation</td>
<td>2019</td>
<td>Martin Horwath</td>
</tr>
</tbody>
</table>